Assignment 1

Friday $27^{\text {th }}$ January, 2017

1. Given a function $f: X \rightarrow X$ such that $f(x+y)=f(x y)$ when:
(a) $x, y \geq 1$ and $X=1,2,3, \ldots$
(b) $x, y \geq 4$ and $X=8,9,10, \ldots$

Find the value of $f(9)$ when $f(8)=9$.
2. Count the number of rectangles present in a rectangular grid consisting of 100 rows and 95 columns. (*)
3. Give a story proof as well as a mathematical proof for the following:

$$
\begin{equation*}
\binom{n}{m}\binom{m}{k}=\binom{n}{k}\binom{n-k}{m-k} \tag{**}
\end{equation*}
$$

4. Find the value of the following. Provide a story proof used in determining the values: $\left({ }^{* *}\right)$

$$
\begin{gather*}
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots\binom{n}{n} \tag{2}\\
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\ldots\binom{n}{n}^{2} \tag{3}
\end{gather*}
$$

5. Six boxes are colored red, black, blue, yellow, orange and green. In how man ways can you put 20 identical balls into these boxes such that no box is empty? (**)
6. A playground has 4 see-saws placed right next to each other. 31 students from a class visit the playground and wish to play on the see-saw. How many ways can the students be placed on the see-saw if 10 of he students wish to sit only on the left side, 12 on the right side and remaining 9 can sit on either side? $(* * *)$
7. In how many ways can you triangulate a regular polygon having $n+2$ sides? $\left({ }^{* *}\right)$
8. Check if $\left(n^{2}+n+41\right)$ always results in a prime, for all positive integers n. If yes, prove using induction. (*)
9. Prove that $\binom{n}{k} p^{k}(1-p)^{n-k} \leq 1$ for any $n, k \in \mathbb{N}$ and $0 \leq p \leq 1$.
10. Given a $2^{n} \times 2^{n}$ chess board with one square removed, show that you can tile the chessboard using triominoes (L shaped dominoes). $(* * *)$
11. Prove that $\left(\sum_{k=0}^{n}\binom{n}{n-k} x^{2 k-n} \geq 2^{n}\right)$, for $n \in \mathbb{N}$ and $x \in \mathbb{R}^{+}$. (*)
12. Let $x+1 / x$ be an integer for $x \in \mathbb{R}^{+}$. Prove that $x^{n}+1 / x^{n}$ is an integer for $n \in \mathbb{N}$. (**)
13. There are 8 guests at a party and they sit around an octagonal table with one guest at each edge. If each place at the table is marked with a different person's name and initially everybody is sitting in the wrong place, prove that the table can be rotated in such a way that at least 2 people are sitting in the correct places. $(* *)$
14. There are n people present in a room. Prove that among them there are two people who have the same number of acquaintances in the room. $\left({ }^{* *}\right)$
15. In any group of six people, prove that there are either 3 mutual friends or 3 mutual strangers. Is the same true when the group has 5 people? (***)
16. A box contains 6 red, 8 green, 10 blue, 12 yellow and 15 white balls. What is the minimum no. of balls we have to choose randomly from the box to ensure that we get 9 balls of same color?
17. How many ways are there to assign five different jobs to four different employees if every employee is assigned at least one job? (*)
18. We are given the plot of a function $f .\left(^{*}\right)$
(a) There exists a horizontal line that intersects the plot at three places. What can we say about the type of this function? Give an example of such a function.
(b) There exists a vertical line that does not intersect the plot of the graph. What can we say about the type of this function? Give an example of such a function.
19. A binary relation can have the properties of reflexive, symmetric and transitive. Thus we have 8 possible different subsets of these properties a binary relation can have. Give an example of a relation in each of the eight cases. (${ }^{*}$)
20. How many relations are there on a set with n elements that are: $\left({ }^{* *)}\right.$
(a) Symmetric
(b) Antisymmetric
(c) Asymmetric
(d) Irreflexive
(e) Reflexive and symmetric
(f) Neither reflexive nor irreflexive
