Assignment 7

Wednesday $5^{\text {th }}$ April, 2017

1. Find the generating function for the number of integer solutions to the equation $c_{1}+c_{2}+$ $c_{3}+c_{4}=20$ where $-3 \leq c_{1},-3 \leq c_{2},-5 \leq c_{3} \leq 5,0 \leq c_{4}$
2. In how many ways can 2 dozen identical robots be assigned to 4 assembly lines with
(a) at least 3 robots assigned to each line?
(b) at least 3 , but not more than 9 robots assigned to each line?
3. In how many ways can 3000 identical envelops be divided, in packages of 25 , among 4 student groups so that each group gets at least 150 , but not more than 1000 of the envelops?
4. In how many ways can we select 7 non-consecutive integers from $\{1,2,3 \ldots, 50\}$?
5. In $f(x)=[1 /(1-x)]\left[1 /\left(1-x^{2}\right)\right]\left[1 /\left(1-x^{3}\right)\right]$, the co-efficient of x^{6} is 7 . Interpret this result in terms of partitions of 6 .
6. Show that the number of partitions of a positive integer n where no summand appears more than twice equals the number of partitions of n where no summand is divisible by 3 .
7. Show that the number of partitions of $n \in \mathbb{Z}^{+}$, where no summand is divisible by $4=$ the number of partitions of n where no even summand is repeated (although odd summands may or may not be repeated).
8. Using a Ferrers graph, show that the number of partitions of an integer n into summands not exceeding n is equal to the number of partitions of n into at most m summands.
9. Find the exponential generating function for the sequence $0!, 1!, 2!, 3!, \ldots$
