Assignment 7 Solutions of Generating Functions

1. $c_{1}+c_{2}+c_{3}+c_{4}=20$ where $-3 \leq c_{1}, c_{2},-5 \leq c_{3} \leq 5,0 \leq c_{4}$
$\left(3+c_{1}\right)+\left(3+c_{2}\right)+\left(5+c_{3}\right)+c_{4}=31$
By replacing the variables now the problem turns into $x_{1}+x_{2}+x_{3}+x_{4}=31$ where $0 \leq$ $x_{1}, x_{2}, x_{4} ; 0 \leq x_{3} \leq 10$
Hence the answer is the coefficient of x^{31} in the generating function :
$\left(1+x+x^{2} \ldots\right)^{3}\left(1+x+x^{2} \ldots \ldots . .+x^{10}\right)$.
2. Using the idea of generating functions we have :
(a) we would have $\left(x^{3}+x^{4}+\ldots \ldots . .\right)^{4}$ but we can take x^{12} as a common factor so we have $x^{3}+x^{4}+$ \qquad .. $)^{4}=x^{12}\left(1+x+x^{2}+\right.$ \qquad
We also know that $\frac{1}{1-x}=\left(1+x+x^{2}+\ldots \ldots.\right)$ and so $\frac{1}{(1-x)^{4}}=\left(1+x+x^{2}+\ldots \ldots .\right)^{4}$ and so we have $x^{12}\left(1+x+x^{2}+\ldots \ldots . .\right)^{4}=x^{12}(1-x)^{-4}$. Now want to find the coefficient of x^{12} in $(1-x)^{-4}$ which is $\binom{-4}{12}(-1)^{12}=(-1)^{12}\binom{4+12-1}{12}=\binom{15}{12}$
(b) In a similar way, we need to find the coefficient of x^{12} in $\left(1+x+x^{2}+\ldots .+x^{6}\right)^{4}$.
3. Consider each package of 25 envelopes as one unit. Then the answer is the coefficient of x^{120} in $\left(x^{6}+x^{7}+\ldots+x^{39}+x^{40}\right)^{4}=x^{24}\left(1+x+\ldots+x^{34}\right)^{4}$, which is the same as the coefficient of x^{96} in $\left(\frac{1-x^{35}}{1-x}\right)^{4}$
4. There is a one-one correspondence between the possible subsets and the solutions of the equation $c_{1}+c_{2}+c_{3}+\ldots c_{8}=49$, where $c_{1}, c_{8} \geq 0, c_{i} \geq 0 \forall 2 \leq i \leq 7$.
The number of these solutions is the coefficient of x^{49} in the generating function : $\left(1+x+x^{2} \ldots\right)\left(x^{2}+x^{3}+\ldots\right)^{6}\left(1+x+x^{2} \ldots\right)=x^{12} /(1+x)^{8}$.
This can be seen as the coefficient of $x^{3} 7$ in $(1-x)^{-8}$ which is equal to $\binom{44}{37}$.
5. The number of partitions of 6 into 1 's 2 's and 3 's is 7 .

6 . Let $a(x)$ be the generating function for number of partitions of n where no summand appears more than twice and $b(x)$ be the generating function for number of partitions of n where no summand is divisible by 3 . It suffices to show that $a(x)$ and $b(x)$ are the same. Observe that the generating function for $a(n)$ is given by
$a(x)=\left(1+x+x^{2}\right)\left(1+x^{2}+x^{4}\right)\left(1+x^{3}+x^{6}\right) \ldots=\frac{1-x^{3}}{1-x} \cdot \frac{1-x^{6}}{1-x^{2}} \cdot \frac{1-x^{9}}{1-x^{3}} \ldots=b(x)$ where, $b(x)=\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{3}} \ldots$.
7. Let $f(x)$ be the generating function for number of partitions of n where no summand is divisible by 4 and $g(x)$ be the generating function for number of partitions of n where no even summand is repeated. It suffices to show that $f(x)$ and $g(x)$ are the same.
$f(x)=\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{3}} \ldots$.
$g(x)=\frac{1}{1-x} \cdot\left(1+x^{2}\right) \cdot \frac{1}{1-x^{3}} \cdot\left(1+x^{4}\right) \cdot \frac{1}{1-x^{5}} \cdot\left(1+x^{6}\right) \ldots$
$=\frac{1}{1-x} \cdot \frac{1-x^{4}}{1-x^{2}} \cdot \frac{1}{1-x^{3}} \cdot \frac{1-x^{6}}{1-x^{4}} \cdot \frac{1}{1-x^{5}} \cdot \frac{1-x^{12}}{1-x^{6}} \ldots$
$=\frac{1}{1-x} \cdot \frac{1}{1-x^{2}} \cdot \frac{1}{1-x^{3}} \ldots=f(x)$
8. We can consider the Ferrers graph with summands (rows) not exceeding m. Now when we consider the transpose, we obtain yet another Ferrers graph that has m summands (rows). The result follows from the one-one correspondence of the between these graphs.
9. the exponential of the sequence 0 !, 1 !, 2 !. \qquad is given by $\frac{0!}{0!} x^{0}+\frac{1!}{1!} x^{1}+\frac{2!}{2!} x^{2} \ldots \ldots \ldots$ $=1+x^{1}+x^{2}+x^{3}$. \qquad $=\frac{1}{1-x}$

