Assignment 7

Solutions of Generating Functions

1. $c_1 + c_2 + c_3 + c_4 = 20$ where $-3 \le c_1, c_2, -5 \le c_3 \le 5, 0 \le c_4$ $(3+c_1)+(3+c_2)+(5+c_3)+c_4=31$

By replacing the variables now the problem turns into $x_1 + x_2 + x_3 + x_4 = 31$ where $0 \le$ $x_1, x_2, x_4; 0 \le x_3 \le 10$

Hence the answer is the coefficient of x^{31} in the generating function : $(1+x+x^2...)^3(1+x+x^2....+x^{10}).$

- 2. Using the idea of generating functions we have :
 - (a) we would have $(x^3 + x^4 + \dots)^4$ but we can take x^{12} as a common factor so we have $(x^3 + x^4 + \dots)^4 = x^{12}(1 + x + x^2 + \dots)^4$. We also know that $\frac{1}{1-x} = (1 + x + x^2 + \dots)$ and so $\frac{1}{(1-x)^4} = (1 + x + x^2 + \dots)^4$ and so we have $x^{12}(1 + x + x^2 + \dots)^4 = x^{12}(1 x)^{-4}$. Now want to find the coefficient of x^{12} in $(1-x)^{-4}$ which is $\binom{-4}{12}(-1)^{12} = (-1)^{12}\binom{4+12-1}{12} = \binom{15}{12}$
 - (b) In a similar way, we need to find the coefficient of x^{12} in $(1 + x + x^2 + \dots + x^6)^4$.
- 3. Consider each package of 25 envelopes as one unit. Then the answer is the coefficient of x^{120} in $(x^6+x^7+\ldots+x^{39}+x^{40})^4=x^{24}(1+x+\ldots+x^{34})^4$, which is the same as the coefficient of x^{96} in $(\frac{1-x^{35}}{1-x})^4$
- 4. There is a one-one correspondence between the possible subsets and the solutions of the equation $c_1 + c_2 + c_3 + \dots c_8 = 49$, where $c_1, c_8 \ge 0, c_i \ge 0 \ \forall \ 2 \le i \le 7$. The number of these solutions is the coefficient of x^{49} in the generating function: $(1+x+x^2\ldots)(x^2+x^3+\ldots)^6(1+x+x^2\ldots)=x^{12}/(1+x)^8$. This can be seen as the coefficient of x^37 in $(1-x)^{-8}$ which is equal to $\binom{44}{37}$.

- 5. The number of partitions of 6 into 1's 2's and 3's is 7.
- 6. Let a(x) be the generating function for number of partitions of n where no summand appears more than twice and b(x) be the generating function for number of partitions of n where no summand is divisible by 3. It suffices to show that a(x) and b(x) are the same.

Observe that the generating function for
$$a(n)$$
 is given by $a(x) = (1+x+x^2)(1+x^2+x^4)(1+x^3+x^6)\dots = \frac{1-x^3}{1-x} \cdot \frac{1-x^6}{1-x^2} \cdot \frac{1-x^9}{1-x^3} \dots = b(x)$ where, $b(x) = \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^3} \cdot \dots$

7. Let f(x) be the generating function for number of partitions of n where no summand is divisible by 4 and g(x) be the generating function for number of partitions of n where no even summand is repeated. It suffices to show that f(x) and g(x) are the same.

$$f(x) = \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^3} \dots$$

$$g(x) = \frac{1}{1-x} \cdot (1+x^2) \cdot \frac{1}{1-x^3} \cdot (1+x^4) \cdot \frac{1}{1-x^5} \cdot (1+x^6) \dots$$

$$= \frac{1}{1-x} \cdot \frac{1-x^4}{1-x^2} \cdot \frac{1}{1-x^3} \cdot \frac{1-x^6}{1-x^4} \cdot \frac{1}{1-x^5} \cdot \frac{1-x^{12}}{1-x^6} \dots$$

$$= \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^3} \cdot \dots = f(x)$$

- 8. We can consider the Ferrers graph with summands (rows) not exceeding m. Now when we consider the transpose, we obtain yet another Ferrers graph that has m summands (rows). The result follows from the one-one correspondence of the between these graphs.
- 9. the exponential of the sequence 0!,1!,2!..... is given by $\frac{0!}{0!}x^0 + \frac{1!}{1!}x^1 + \frac{2!}{2!}x^2$ $= 1 + x^1 + x^2 + x^3$ $= \frac{1}{1-x}$

1