
Assignment 4

Solutions of graph problems

1. Let us assume that G is not a cycle.
Consider the maximal path in the graph. Let the end points of the path
be denoted as v1, vk respectively. If either of the end nodes were connected
to a node outside the considered path, we would have been able to extend
the path and this would contradict that the considered path is maximal.
Since v1, vk are the end nodes, only one of their edges is exhausted. Given
that the degree of the nodes are 2, each must be connected to a vertex
within the path. Let us assume v1 is connected to vi, then degree of vi
would be greater than 2, hence a contradiction. We can argue similarly
if vk is connected to some node vj in the path. Thus, we can conclude
that v1 must be connected to vk. Also note k = n else the graph would
be disconnected.

2. A vertex v of a graph G is called a cut-vertex of G if κ(G− v) > κ(G).
Since v is a cut vertex of G, let (G − v) have components C1, C2, . . . , Ck

and k > 1. Consider any two vertices x ∈ Ci and y ∈ Cj . Then (x, y) /∈
E(G). Therefore (x, y) ∈ E(G). Thus any two vertices in two different
components of G−v are connected by a direct edge in G−v. Now consider
any two vertices (x, y) in the same component Ci . If (x, y) /∈ E(G) then
(x, y) ∈ E(G). If (x, y) ∈ E(G), then (x, y) /∈ E(G). But then, consider
any node in a different component z ∈ Cj . We have already shown that
(x, z) ∈ E(G − v) and (y, z) ∈ E(G − v). Hence there is a path between
x and y in (G − v). Thus, there is a path between any two vertices in
(G− v). Hence (G− v) is connected.

3. For Petersen graph, we have, v = 10 and e = 15. Inspecting the graph,
we see that:

• Each edge is included in exactly two faces, and

• Each cycle has a length of 5 or greater.

Combining these two facts yields 5r ≤ 2v. Putting v = 10, we get, r ≤ 6.
Now, substituting the values of v and e into Euler’s formula 9v−e+r = 2,
we get r=7.

Both the observations lead to a contradiction. Hence Petersen graph is
non-planar.
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4. Assume that G is a connected finite simple graph with n vertices. Then
every vertex in G has degree between 1 and n − 1 (the degree of a given
vertex cannot be zero since G is connected, and is at most n − 1 since
G is simple). Since there are n vertices in G with degree between 1 and
n− 1, the pigeonhole principle lets us conclude that there is some integer
k between 1 and n−1 such that two or more vertices have degree k. Now,
suppose G is an arbitrary finite simple graph (not necessarily connected).
If G has any connected component consisting of two or more vertices, the
above argument shows that that component contains two vertices with the
same degree, and therefore G does as well. On the other hand, if G has
no connected components with more than one vertex, then every vertex in
G has degree zero, and so there are multiple vertices in G with the same
degree.

The same does not hold true for a multi-graph. A counter example is two
vertices connected with an edge with one vertex having a loop.

5. An equivalence relation is one, which is reflexive, symmetric and transitive.
Let us check for these properties in the given relation R:

(a) Reflexive: Since it is given that aRb if a = b, the given relation is
reflexive.

(b) Symmetric: Since the given graph is undirected, if there is a path
from a to b, then there will be a path from b to a as well. Therefore,
the given relation is symmetric.

(c) Transitive: If aRb and bRc, then definitely aRc, i.e. in an undi-
rected graph, if there is a path from a to b, and there is a path from
b to c, then there will also be a path from a to c; hence the given
relation is transitive.

Therefore, R is equivalence relation.

Further, an equivalence relation on a set A divides the set into non-empty
disjoint subsets called partitions of the set A. In the case of the given
relation R, it will partition the vertex set V into subsets where there will
be a connected component of the graph on the vertices present in each
partition.

6. (Q6) If (a, b) is part of a cycle then its removal does not disconnect G:
If G contains a cycle then removing any edge, say (a, b), that is part of
the cycle does not disconnect G as any path that uses (a, b) can now use
the alternate route from a to b on the cycle. Therefore, removal of (a, b)
does not disconnect G.

If removal of (a, b) does not disconnect G, then (a, b) is a part of a cycle:
Assume we remove the edge (a, b) from G (as given). Let us call the new
graph G1. It is given that removal of (a, b) does not disconnect G. Hence
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G1 must be connected and there is a path in it from a to b. Now, when
we add the edge (a, b) to G1, which is connected, a, b should form a cycle
in G1.

7. If every induced subgraph of a graph G is connected, then G must be a
complete graph.

8. If the considered class of graphs are cycle graphs Cn, we know they are
made up of n edges. If they must be self complementary then:(

n

2

)
− n = n

=⇒ n(n− 1) = 4n

=⇒ n = 5

9. Let e be the number of edges. Let v be the number of vertices. Let δ
be min degree of vertex in graph. Let ∆ be the max degree of vertex in
graph. Every vertex’s degree must lie between this δ and ∆ limit. That
is, δ ≤ deg(v) ≤ ∆.
Using the above hint, thus for n vertices in a graph, we have nδ ≤ 2e ≤ n∆.
Dividing throughout by n, we have δ ≤ 2(e/n) ≤ ∆.

10. Consider a path of maximum length in G, say P =< v1, v2, . . . , vl >. The
vertex v1 cannot be adjacent to any vertex in P, i.ev1, . . . , vl. Proof of the
claim is: Suppose not, i.e. suppose that there exists a vertex w ∈ V (G)
such that v1 is adjacent to w. Then the walk P ′ =< w, v1, . . . , vl > is
a path in G with length more than P . But this is a contradiction, since
P is a path of maximum length in G. Hence v1 can be adjacent only to
v2, . . . , vl, which means that deg(v1) ≤ l−1. On the other hand, we know
that v1 has degree at least k. Thus k ≤ l − 1 = length(P ), which implies
that P has length at least k.

11. For K6, we know it has six vertices. Furthermore, each vertex has degree
5, and is joined to all the others. To reach a vertex and leave it again
uses two of its edges, so any vertex between the first and last can have
only an even number of its edges used. However, the beginning vertex will
have an odd number of edges used in the trail, since starting only uses
one edge. (The end vertex, for a similar reason, will have an odd number
of its edges used.) We can divide the nodes in the graph into pairs of
nodes, ignore the edge between each pair and observe an eulerian circuit
possible on the remaining edges. Therefore, the trail can use four of the
five edges of each of its four “inner” vertices, and all five of its first and
last: 4×4+2×5 = 26. However, each edge is counted twice: once for each
vertex it touches. Therefore, the length of the trail is 26/2 = 13 edges.
On K6, the maximum trail length is 13 edges.
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K2n, of course, has 2n vertices. Each vertex joins to 2n− 1 edges. On the
trail, there are 2n − 2 vertices between the first and last. Therefore, its
max trail length is:

[(2n− 2)(2n− 2) + 2(2n− 1)]/2 = [4n2 − 8n+ 4 + 4n–2]/2

= [4n2 − 4n+ 2]/2

= 2n2 − 2n+ 1

Therefore, the complete graph K2n has maximum trail length 2n2–2n+ 1
edges.

12. Among the four married couples no one shook more than 6 hands. There-
fore, if remaining 7 people each shake a different number of hands, the
numbers must be 0, 1, 2, ..., and 6. The person who shook 6 hands has to
be married to the person who shook 0 hands (otherwise that person could
have shaken only 5 hands.) Similarly, the person who shook 5 hands is
bound to be married to the person who shook 1 hand. So that the married
couples shook hands in pairs 6/0,5/1,4/2,3/3. Since Carolyn must have
had non-unique degree, the 3/3 degree pair represents the handshake of
Carolyn and Richard.

13. All the graphs obtained by removing an edge from K5 are isomorphic.
Given this, we can give a planar figure for K5 − e as below:

Similar argument can be said about K3,3 − e, all of them are isomorphic
to each other. Any one of the crossing over edges can be deleted.
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14. Let G be a bipartite graph and H be a subgraph of G. Since G is bipartite
there exists a bipartition V1, V2 of V (G), that is, V1, V2 is a partition of G
such that if v, w ∈ Vi, where i = 1, 2, then (v, w) /∈ E(G). In particular,
since V (H) ⊆ V (G) we define V ′1 = V1∩V (H) and V ′2 = V2∪V (H). Note
that V ′1 , V

′
2 is a partition of V (H), and furthermore it is a bipartition since

if v, w ∈ V ′i , where i = 1, 2, then v, w ∈ Vi as well (since V i ⊂ Vi), and so
v, w /∈ E(H) since v, w /∈ E(G) and E(H) ⊆ E(G).

15. The graph on 4 vertices with maximum edges is K4. Given that we can
provide a planar embedding of K4, every graph on 4 vertices is a subgraph
of K4. So, 4 vertices should always be planar as a sub-graph of a planar
graph is always planar.

16. The edge set of any subgraph will be a subset of the set of edges in the
original planar graph. This means that since edges in the original graphs
do not cross, edges in a subset of the original set of edges also do not cross.

17. Given that the graph is 4-regular, degree of each node is 4. |E| = 16 is
given, therefore, we can conclude sum of the degree of all nodes is twice
the number of edges, i.e

4|V | = 2|E|
|V | = 8

Now using Euler’s Formula |V |−|E|+r = 2, we get the number of regions
r = 10.

18. If G has only one vertex, then this vertex has degree zero. If G has only
two vertices, then both vertices have degree at most one. Let n ≥ 3, where
n is the number of vertices. Assume degree of every vertex in G is at least
six. Then,

∑
v∈V deg(v) ≥ 6n. We know

∑
v∈V deg(v) = 2m, where m

denotes the number of edges. Thus, 2m ≥ 6n so that m ≥ 3n. This is not
possible because, we know that m ≤ 3n− 6. Thus we get a contradiction.
Hence G has at least one vertex of degree less than 6.
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19. If dual of a planar graph is isomorphic to the given graph, we can conclude
that number of vertices is the same as the number of regions. Therefore,
using Euler’s formula for planar graphs, we can conclude thatm = 2(n−1),
where |E| = m.

20. (a) When G1, G2 are homeomorphic graphs, then they may be regarded
isomorphic except, possibly, for vertices of degree 2. Consequently,
two such graphs will have the same number of vertices of odd degree.

(b) If G1 has an Euler trail (and is connected), then G1 has all vertices
of even degree, except the end vertices of the trail. From (a) we can
conclude that G2 is also connected and has an Euler trail with all
vertices having even degree except the end vertices.
The converse follows in a similar way.

(c) If G1 has an Euler circuit, the G1 ( is connected and) has all vertices
of even degree. From (a) we can conclude that G2 is also connected
and has all vertices of even degree. Hence G2 has an Euler circuit as
well.
The converse follows in a similar way.

21. Since C9 represents a cycle graph on 9 vertices, we have a unique Hamil-
tonian path starting from each vertex and moving clockwise (or anti-
clockwise). Thus, total number of Hamiltonian graphs are 9.

22. Every permutation of the vertices given result to a Hamiltonian path when
the underlying graph is complete. Therefore, total number of possible
permutations are 9!. However, we can observe that there are a pair of
permutations that given rise to the same path (i.e start vertex becomes
the end vertex and vice versa). Counting each such path only once, we
have Total possible Hamiltonian paths to be 9!

2 .

23. In a complete graph Kn, where n is odd, we see that the degree of each
node is n − 1 (even). We also can observe that one Hamiltonian cycle
consumes precisely two edges of every vertex. Hence the total number of
Hamiltonian cycles are n−1

2 .

24. Let us prove this by inducting on n.
In the base case n = 2, the 2-dimensional hypercube is a square. The
length four cycle starts from 00, goes through 01, 11, and 10, and returns
to 00.
Suppose now that every (n−1)-dimensional hypercube has an Hamiltonian
cycle.
Let v ∈ {0, 1}n−1 be a vertex adjacent to 0n−1 (the notation 0n−1 means
a sequence of n-1 zeros) in the Hamiltonian cycle in a (n− 1)-dimensional
hypercube. The following is a Hamiltonian cycle in an n-dimensional
hypercube: have a path that goes from 0n to 0v by passing through all
vertices of the form 0x (this is simply a copy of the Hamiltonian path in
dimension (n − 1), minus the edge from v to 0n−1 ), then an edge from
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0v to 1v, then a path from 1v to 10n−1 that passes through all vertices of
the form 1x, and finally an edge from 10n−1 to 0n.
This completes the proof.

25. Let x, y ∈ V with (x, y) ∈ E. Therefore x, y are non-adjacent in G. We
also know that the degG(x) = degG(y) ≥ 2n+ 2− n = n+ 2.
Therefore, we see that degG(x) + degG(y) = 2n+ 4 > 2n+ 2 = |V |.
By virtue of Theorem 11.9 in the text, we can conclude that there must
exist a Hamiltonian cycle.
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