
Solutions for Assignment 6
Principle of Inclusion and Exclusion

1. We must find positive integer solutions for x1 +x2 +x3 +x4 +x5 = 15, where 1 ≤ xi ≤ 4 for
all 1 ≤ i ≤ 5.
This is equal to the non-negative integer solutions for y1 + y2 + y3 + y4 + y5 = 10, where
0 ≤ yi ≤ 3 for all 1 ≤ i ≤ 5.
We denote the condition ci for 1 ≤ i ≤ 5 as the solutions where yi > 3 and yj ≥ 0 for
1 ≤ j ≤ 5 and i 6= j. Therefore, to find solutions for N(c1) we would find the positive integer
solutions for the equation z1+z2+z3+z4+z5 = 6, where z1+4 = y1; zi = yi for all 2 ≤ i ≤ 5.

Similarly, for N(cicj) we would find the positive integer solutions for the equation w1+w2+
w3 + w4 + w5 = 2, where wi + 4 = yi;wj + 4 = yj ; zk = yk for all 1 ≤ k ≤ 5; k 6= i, j.

We determine the solution as :

N(c1 c2 c3 c4 c5) = S0 − S1 + S2 − S3 + S4 − S5

=

(
5 + 10− 1

10

)
−

(
5

1
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6

)
+
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2
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2

)
− 0 + 0− 0

=
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)
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1
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6

)
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2

)(
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)
However, for each such arrangement, we have 15! ways of placing the muffins by permuting
them. Hence the total arrangements possible would be 15! times the above solution.

2. We denote ci to denote the condition that i did not appear in any of the dice. Now all we
have to determine is N(c1 c2 c3 c4 c5 c6). Using the principle of inclusion and exclusion, we
have the solution as below:
[68 −

(
6
1

)
58 +

(
6
2

)
48 −

(
6
3

)
38 +

(
6
2

)
28 −

(
6
1

)
18]/68

The division by 68 to divide by the total sample space.

3. For 1 ≤ i ≤ 7, let ci denote the situation where the ith friend was at lunch with her. We
need to determine if N(c1 c2 c3 . . . c7) is positive or not.

N(c1 c2 c3 . . . c7) = 84−
(
7

1

)
35 +

(
7

2

)
16−

(
7

3

)
8 +

(
7

4

)
4−

(
7

5

)
2 +

(
7

6

)
1−

(
7

7

)
0

= 0

Hence we can conclude that she always had company for lunch.

4. Let c1 denote the presence of consecutive E’s in the arrangement, likewise c2, c3, c4, c5 are for
N’s O’s R’s S’s respectively.

(a) no consecutive identical letters

N(c1 c2 c3 . . . c5) = S0 − S1 + S2 − S3 + S4 − S5

= 14!/(2!)5 −
(
5

1

)
[13!/(2!)4] +

(
5

2

)
[12!/(2!)3]−

(
5

3

)
[11!/(2!)2] +

(
5

4

)
[10!/(2!)]− 9!
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(b) If Em denotes the number of elements in the set that satisfy precisely m conditions out
of t condition, we have :
Em = Sm −

(
m+1
1

)
Sm+1 +

(
m+2
2Sm+2

)
. . . (−1)t−m

(
t

t−m

)
St

E2 = S2 −
(
3
1

)
S3 +

(
4
2

)
S4 −

(
5
3

)
S5

(c) If Lm denotes the number of elements in the set that satisfy at least m conditions out
of t condition, we have :
Lm = Sm −

(
m

m−1

)
Sm+1 +

(
m+1
m−1

)
Sm+2 . . . (−1)t−m

(
t−1
m−1

)
St

L3 = S3 −
(
3
2

)
S4 +

(
4
2

)
S5

5. For 1 ≤ i ≤ 7 , ci denote the condition that i is not in the range of f .
Functions where |f(A)| = 4 is given by:

E3 = S3 −
(
4

1

)
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2

)
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(
6

3

)
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(
7

4

)
S7

=

(
7

3

)
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(
4

1

)(
7

4

)
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(
5

2

)(
7

5

)
210 −

(
6

3

)(
7

6

)
110 +

(
7

4

)(
7

7

)
010

For functions where |f(A)| ≤ 4 we have L3 = S3 −
(
3
2

)
S4 +

(
4
2

)
S5 −

(
5
2

)
S6 +

(
6
2

)
S7

6. Given we model the problem as 1 ≤ i ≤ 4 where ci denotes void in clubs(i = 1), diamonds(i =
2), hearts(i = 3), spades(i = 4).

(a) The probability that at least one from each suit is included is = N(c1 c2 c3 c4)/
(
52
13

)
=(

52
13

)
−
(
4
1

)(
39
13

)
+
(
4
2

)(
26
13

)
−
(
4
3

)(
13
13

)
(b) The probability of exactly one void is E1/

(
52
13

)
where E1 = S1−

(
2
1

)
S2+

(
3
2

)
S3−

(
4
3

)
S4 =(

4
1

)(
39
13

)
− 2

(
4
2

)(
26
13

)
+ 3

(
4
3

)(
13
13

)
− 0

(c) The probability of exactly two void is E2/
(
52
13

)
where E2 = S2−

(
3
1

)
S3 =

(
4
2

)(
26
13

)
−3

(
4
3

)(
13
13

)
7. (a) (d210), where d10 denotes the number of derangements of 10 items.

(b) From 1 ≤ i ≤ 10 let ci denote that goon i gets back both his possessions.
N(c1 c2 c3 . . . c10) = (10!)2 −

(
10
1

)
9!2 +

(
10
1=2

)
8!2 . . . (−110)

(
10
0

)
0!2

8. (a) (12!)d12

(b) 12!
(
12
6

)
d6

9. We first construct the matrix that represents the students in rows and the subjects in columns
and the forbidden assignments. We then write the rooks polynomial for the board where the
rooks are considered to be placed on the forbidden slots as below:
r(C, x) = (1 + 4x+ 3x2)(1 + 4x+ 2x2) = 1 + 8x+ 21x2 + 20x3 + 6x4

For 1 ≤ i ≤ 5, let ci be the condition that an assignment is made with person i assigned to
a language he/she wishes to avoid.

N(c1 c2 c3 c4 c5) = 5!− 8(4!) + 21(3!)− 20(2!) + 6(1!) = 20

The above can be easily obtained by using the coefficients of the rook polynomial as Si =
ri(5− i)! where ri is the coefficient of xi.

10. In this question, we see the benefit of rearranging the rows and columns of the matrix
representing the forbidden arrangements.
Assume the rows to be in the order 1,5,3,4,2,6 and columns in the order 1,5,2,4,6,3.
Now when we mark the forbidden slots, we can see that the resulting board can be broken
into smaller independent boards. Same as in the previous example, we construct the rook
polynomial for arranging the rooks in the forbidden slots rather than constructing it for the
fr

r(C, x) = (1 + 4x+ 2x2)(1 + 3x+ 3x2)(1 + x) = 1 + 8x+ 22x2 + 25x3 + 12x4 + 2x5

For 1 ≤ i ≤ 6, let ci denote the condition that all 6 values appear on the red and green die

2



after rolling 6 times but i appeared on the red die paired with one of the forbidden numbers
on the green.

N(c1 c2 c3 c4 c5 c6) = 6!− 8(5!) + 22(4!)− 25(3!) + 12(2!)− 2(1!) + 0(0!) = 160
Then the probability that every value came up on the die is: (6!)(160)/[(28)6]

11. Here we have r(C, x) = 1 + 8x+ 20x2 + 17x3 + 4x4

Let the conditions be specified as follows:
c1 : f(1) = v or w
c2 : f(2) = u or w
c3 : f(3) = x
c4 : f(4) = v , x or y
The solution to be posed problem is N(c1 c2 c3 c4) = 6!−8(5!)+20(4!)−17(3!)+4(2!) = 146
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