CSL105: Discrete Mathematics
 Major Examination
 Indian Institute of Technology Ropar
 Instructor: Dr. Sudarshan Iyengar
 28 April 2017

Total Duration : 3 hours
Name :
Entry Number :
Section I
[5 Marks each]

1. How many 4 digit decimal numbers are there such that 1 is not in the first place, 2 is not in the second, 3 not in third and 4 not in fourth? Prove.
2. How many positive integer solutions are there for $x_{1}+x_{2}+x_{3}<10$. Explain.
3. Prove that there exists a k such that 11 divides $2^{k}-1$.
4. Is it possible to give an example of a relation which is not a function? Explain.
5. Given two finite sets A, B, we say that $A \times B=B \times A$ iff \qquad ?
6. Is complement of a Tree with more than 4 vertices always connected? Give reason for your answer.
7. How many non-isomorphic induced subgraphs does K_{6} have?
8. Write a statement that is equivalent to $p \rightarrow q$ and prove it with the help of a truth table.
9. What is the rook polynomial of a 3×3 chess board? Explain.
10. What is the maximum length of a trail in $K_{2 n}$?

Section II

1. Show that whenever 25 girls and 25 boys are seated around a circular table, there will always be a person, both of whose neighbors are boys.
2. Show that $\sum_{v \in V} \operatorname{deg}(v)^{2}=\sum_{v \in V} \sum_{u \in N(v)} \operatorname{deg}(u)$, where $N(v):\{$ set of vertices adjacent to v \}.
3. Let G be an undirected graph with subgraphs G_{1}, G_{2}. If $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=K_{n}$ for some $n \in \mathbb{Z}^{+}$, then show that :

$$
P(G, \lambda)=\frac{P\left(G_{1}, \lambda\right) P\left(G_{2}, \lambda\right)}{(\lambda)^{n}}
$$

4. Show that the number of partitions of a positive integer n where no summand appears more than twice equals the number of partitions of n where no summand is divisible by 3 .
5. Let $E=\left(e_{i j}\right)_{m \times n}, F=\left(f_{i j}\right)_{m \times n}$ be two $m \times n(0,1)$-matrices. We say that E precedes, or is less than, F, and we write $E \leq F$, if $e_{i j} \leq f_{i j}$, for all $1 \leq i \leq m, 1 \leq j \leq n$.
For $m, n \in \mathbb{Z}^{+}$, let A be the set of all $m \times n(0,1)$-matrices. Prove that the "precedes" relation makes A into a poset.
