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Section I [5 Marks each]

1. Let S = {1, 2, 3, . . . }. Consider a relation R = {(a, b)|a + b ≤ 10}. Prove
or disprove that R satisfies reflexive, symmetric, antisymmetric and tran-
sitive properties.

Solution:

(a) R cannot be reflexive since ∀a ∈ S 3′ a ≥ 6, (a, a) /∈ R
(b) R is symmetric since a+ b = b+ a and hence ∀(a, b) ∈ R, we can say

that (b, a) ∈ R
(c) R is not antisymmetric since (8, 2) ∈ R and (2, 8) ∈ R but 2 6= 8.

(d) R is not transitive since, (3, 2) ∈ R and (2, 8) ∈ R but (3, 8) /∈ R
since 3 + 8 ≥ 10.

- - - X - - -

2. In the matrix representation of a relation, how does one find if the relation
is transitive or not? Prove that your method works.
Solution:
Let R be transitive and M denote the matrix representing R.
For R to be transitive, we know that M2 ≤M

Let M2
xy be the the xth row yth column entry of M2.

If M2
xy = 1 then there must exist at least one y ∈ A 3′ Mxy = Myz = 1.

This happens only if xRy and yRz guaranteeing that R is transitive.

- - - X - - -
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3. Every sequence of n2 + 1 distinct real numbers contains a subsequence of
length n+ 1 that is either strictly increasing or strictly decreasing.

Solution:

Let a1, a2, . . . an2+1 be the sequence of n2 + 1 distinct real numbers.
For 1 ≤ k ≤ n2 + 1, let xk denote the maximum length of a decreasing
subsequence that ends with ak and yk denote the maximum length of a
increasing subsequence that ends with ak.
If there is no decreasing or increasing subsequence of length n + 1, then
1 ≤ xk ≤ n and 1 ≤ yk ≤ n for all values of k. Consequently, there are
at most n2 distinct ordered pairs (xk, yk). However we have a sequence of
n2 + 1 ordered pairs associated with each term ak in the sequence. So, by
pigeonhole principle, we have two identical ordered pairs (xi, yi), (xj , yj),
where i 6= j. Since terms in the sequence are distinct, we arrive at a
contradiction - either ai < aj then xi > xj or ai > aj then yi < yj .

- - - X - - -

4. State well ordering principle. State and Prove Mathematical Induction.
Solution :
The well-ordering principle states that every non-empty subset of positive
integers contains a least element.

The principle of Mathematical induction states that:
Let S(n) denote an open mathematical statement that involves one or
more occurrences of the variable n, which represents a positive integer:

(a) If S(n) is true; and

(b) If whenever S(k) is true then S(k + 1) is true;

then S(n) is true for all n ∈ Z+

The proof of the above is as stated:
Let S(n) be such an open statement satisfying (a), (b), and let F =
{t ∈ Z+|S(t) is false}. We wish to prove that F = φ, so to obtain a
contradiction we assume F 6= φ. By well ordering principle F has a least
element m. With m− 1 /∈ F , we have S(m− 1) = true. So by condition
(b) we have that S(m−1)+1) = S(m) = true, contradicting that m ∈ F .

- - - X - - -

5. What is the condition for a function to be invertible? Explain with an
example.
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Solution:
For a function f to be invertible, it must be both one-one and onto.

Let f : A→ B be not onto. Then ∃ y ∈ B 3′ y does not have a pre-image.
That is, ∀x ∈ A, f(x) 6= y. Therefore f−1(y) does not exist.
Similarly, if f is not one-one, ∃ y ∈ B 3′ f(x1) = f(x2) = y, for some
x1, x2 ∈ A. Again in this case, f−1(y) does not exist.

- - - X - - -

6. Six boxes are coloured red, black, blue, yellow, orange and green. In how
man ways can you put 20 identical balls into these boxes such that no box
is empty?
Solution:
This can be done in

(
(20−6)+6−1

5

)
ways.

This is the same as the problem of having combinations with repetitions.
Since no box is to be empty we have in total (20−6) balls left after placing
1 ball in each box.

- - - X - - -

7. Prove that if R is a reflexive relation on set S, then so is any superset of
R inside S × S.
Solution:

Since R is already reflexive, ∀a ∈ S, (a, a) ∈ R. Hence a superset of R will
continue to have the existing elements. Hence R continues to be reflexive.

- - - X - - -

8. Let G = (V,E) be a loop free undirected graph. Prove that if G contains
no cycle of odd length then G is bipartite.
Solution:

Suppose G has no odd cycles.
Choose any vertex v ∈ G.

Divide G into two sets of vertices like this:
Let A be the set of vertices such that the shortest path from each element
of A to v is of odd length;
Let B be the set of vertices such that the shortest path from each element
of B to v is of even length.
WLOG, let v ∈ B and A ∩B = φ.

Suppose a1, a2 ∈ A are adjacent. Then there would be a closed walk of
odd length cycle (v, . . . , a1, a2, . . . , v).
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This contradicts our initial supposition that G contains no odd cycles.
So no two vertices in A can be adjacent.
By the same argument, neither can any two vertices in B be adjacent.
Thus A and B satisfy the conditions for G = (A ∪B,E) to be bipartite.

- - - X - - -

Section II [10 Marks each]

1. Prove by Induction that 1 + 1
2 + 1

3 + · · · =∞.
Solution:
We see that the series is sum of Harmonic numbers
Let Hj be the series 1 + 1

2 + 1
3 + · · ·+ 1

j
Now we prove that :
H2n ≥ 1 + n

2
BASIS STEP: P (0) is true, because H20 = H1 = 11 + 0

2
INDUCTIVE STEP: The inductive hypothesis is the statement that P (k)
is true, that is,
H2k ≥ 1 + k

2
where k is an arbitrary non-negative integer. We must show that if P (k)
is true, then P (k + 1), which states that H2k+1 ≥ 1 + k+1

2 , is also true.
So, assuming the inductive hypothesis, it follows that:

H2k+1 = 1 +
1

2
+

1

3
+ · · ·+ 1

2k
+

1

2k + 1
. . .

1

2k+1

= H2k +
1

2k + 1
. . .

1

2k+1

≥
(

1 +
k

2

)
+

1

2k + 1
. . .

1

2k+1

≥
(

1 +
k

2

)
+ 2k.

1

2k+1

≥
(

1 +
k

2

)
+

1

2

= 1 +
k + 1

2

Since we see that H2n is diverging, we can see that 1 + 1
2 + 1

3 + · · · =∞.

- - - X - - -

2. Show that

1.2.3 + 2.3.4 + 3.4.5 + · · ·+ n(n+ 1)(n+ 2) =
n(n+ 1)(n+ 2)(n+ 3)

4

.
Solution :
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Proof by induction :
S(1) = 1.2.3 = 1.2.3.4

4 , according to the closed form given. Hence, we can
conclude S(1) is true.

Induction Hypothesis: Let the given statement be true up to some k 3′
1.2.3 + 2.3.4 . . . k(k + 1)(k + 2) = k(k+1)(k+2)(k+3)

4

Now, we need to prove that S(k + 1) is true.
Consider 1.2.3 + 2.3.4 . . . k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+ (k + 1)(k + 2)(k + 3)

= (k + 1)(k + 2)(k + 3)

(
k

4
+ 1

)
=

(k + 1)(k + 2)(k + 3)(k + 4)

4

Hence Proved.

- - - X - - -

3. You need to choose a password which is at least 6 characters and at most
8 characters in length with an added condition that each character is an
uppercase letter or a digit. Also, your password must contain at least one
digit. In how many ways can you choose your password?
Solution:
(366 − 266) + (367 − 267) + (368 − 268)

- - - X - - -

4. Enumerate all possible non-isomorphic graphs on 4 vertices.
Solution :
0 edges: 1 unique graph.
1 edge: 1 unique graph.
2 edges: 2 unique graphs: one where the two edges are incident and the
other where they are not incident.
3 edges: 3 unique graphs. One is a 3 cycle with an isolated vertex, and
the other two are trees: one has a vertex with degree 3 and the other has
2 vertices with degree 2.
4 edges: 2 unique graphs: a 4 cycle and one containing a 3 cycle.
5 edges: 1 unique graph.
6 edges: 1 unique graph.
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