Tutorial 1

Friday $6^{\text {th }}$ January, 2017

1 Counting Problems

1. What is the value of k after the following code snippet is executed :
(a) $\mathrm{k}=0$
for $i_{1}=n_{1}$ for $i_{2}=n_{2}$ for $i_{3}=n_{3}$
\vdots

$$
\text { for } i_{m}=n_{m}
$$

$$
\mathrm{k}=\mathrm{k}+1
$$

(b) $\mathrm{k}=0$
2. In how many ways can 10 men and 10 women be seated in a row if:
(a) Any person can sit next to any other.
(b) Men and women occupy alternate seat.
(c) Husband and wife sit together.
3. A committee of 8 has to be chosen out of 16 men and 10 women. In how many ways can this be done if:
(a) No restrictions.
(b) The committee must include equal men and women.
(c) The committee must include 7 women
(d) The committee must include more women than men.
(e) The committee must include at least 6 men.
4. Compute the value of the following:
(a) $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}$
(b) $\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}$

$$
\begin{aligned}
& \text { for } i_{1}=n_{1} \\
& \mathrm{k}=\mathrm{k}+1 \\
& \text { for } i_{2}=n_{2} \\
& \mathrm{k}=\mathrm{k}+1 \\
& \text { for } i_{3}=n_{3} \\
& \mathrm{k}=\mathrm{k}+1 \\
& \text { ! } \\
& \text { for } i_{m}=n_{m} \\
& \mathrm{k}=\mathrm{k}+1
\end{aligned}
$$

2 Permutations with Repetitions

1. Amit, Nihal, Shrikanth, Rohan, Neelam and Rashmi have a Giani's free ice-cream coupon each, in which they can avail the following flavors : Chocolate, Vanilla, Strawberry, Butterscotch. In how many ways can they buy ice-creams? Is it the same as the number of ways in which the vendor at Giani can sell them 6 ice-creams? Justify your answer.
2. There are three bins, each containing red, green, and blue balls respectively. How many arrangements of 5 balls can be made if each bin has unlimited supply of balls?
3. In how many ways can 5 people A, B, C, D, E be arranged on a circular table, such that:
(a) A and B are always seated together.
(b) C and D never sit together.
4. What is the number of subsets of a set with n elements?
5. What is the number of solutions to:

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}=7, \text { where } x_{i} \geq 0 \text { and } \forall i 1 \leq i \leq 4 \tag{1}
\end{equation*}
$$

6. Count the number of ways in which 3 men and 3 women can be seated in a round table such that no two men sit together.
7. What would the coefficient of:
(a) $x^{5} y^{2}$ be in the expansion of $(x+y)^{7}$?
(b) $a^{5} b^{2}$ be in the expansion of $(2 a-3 b)^{7}$?
